Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 56(10): 1467-1471, 2022 Oct 06.
Article in Chinese | MEDLINE | ID: covidwho-2090418

ABSTRACT

SARS-CoV-2 has infected more than 600 million people worldwide and caused more than 6 million deaths. The emerging novel variants have made the epidemic rebound in many places. Meteorological factors can affect the epidemic spread by changing virus activity, transmission dynamic parameters and host susceptibility. This paper systematically analyzed the currently available laboratory and epidemiological studies on the association between the meteorological factors and COVID-19 incidence, in order to provide scientific evidence for future epidemic control and prevention, as well as developing early warning system.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Meteorological Concepts , Laboratories , Epidemiologic Studies
2.
Advanced Functional Materials ; 2022.
Article in English | Web of Science | ID: covidwho-2003585

ABSTRACT

The widespread use of broad-spectrum antimicrobials has accelerated their entry into aquatic environment, which in turn can adversely affect aquatic organisms and humans, especially in the COVID-19 outbreak and the post-pandemic era. For early detection and intervention of adverse effects, this study develops a new carbon nanoprobe (CNP) that can reveal the adverse effects of trace amount triclosan (TCS), a commonly used broad-spectrum antimicrobial (BSA), through a direct visualization method. CNP has excellent fluorescent properties and strong positive charges, which can be applied as fluorescent indicator and trapped in mitochondria by electrostatic attraction. The highly sensitive responsiveness of CNP to mitochondrial membrane potential ensures the visualization method can be used for monitoring the adverse effects of TCS. The trace amount TCS monitoring is achieved according to the decrease of fluorescence signal in mitochondria and the change of mitochondrial morphological structure from lines to dots. Moreover, monitoring TCS level in aquatic organisms of zebrafish is further realized. Compared with the morphological toxicity test, this visualizing strategy reveals the adverse effects in organisms under low-dose TCS exposure more sensitively. This developed highly sensitive nanoprobe is cruical for direct BSA monitoring and thus prevents the harm of BSA to aquatic organisms and humans.

SELECTION OF CITATIONS
SEARCH DETAIL